Table of Contents
SQL Bouncer	1
Login floods and protection	3
Bouncer Database and special setups	4
BlackList_App	7
bouncer_control	8
bouncer_email_control	11
LoggedEvents	13
LoggedEventsXML	15
VIP_Hosts	16
host_stats	17
LogEventsProc	18
proc_trace_by_computer_redirect	19
proc_bouncer_clear	21
proc_bouncer_reset	22
proc_bouncer_reset_stats	23
proc_bouncer_start	24
proc_bouncer_status	25
proc_bouncer_stop	26

[bookmark: _Toc306403125]SQL Bouncer
SQL Bouncer was written as an active security monitor. It is “Active” because it kills the session that is in violation of the rules.
The issue SQL Bouncer was written to solve was users logging on the production SQL server using application user id for casual query use.
SQL Bouncer was written to not only be a security guard dog but also to use SQL Service Broker technology to work in parallel with logon active. This allows SQL Bouncer to have little to no impact on system performance.

[bookmark: _Toc306403126]Login floods and protection

Login flood is a condition where the logins per sec exceed the normal expected rates. Login floods are rare but when they happen SQL bouncer will try to keep up causing high CPU usage. To keep bouncer from exasperating the login flood bounce will shut itself down if logons exceed set levels.
Bouncer keep track of the logins per sec both at the server and per host level. The max levels are set in bouncer control. The bouncer stat update job keeps the logons per sec stats update and will shutdown bouncer if the logons per sec excesses the max levels.

[bookmark: _Toc306403127]Bouncer Database and special setups

SQL Bouncer use it own database to track security violations.
The SQL Bouncer database must be enabled for Service Broker and set as a Trustworthy database.
Bouncer setups the fallowing:
NotifyQueue 	Holds logon events to process with activation and bound to LogEventsProc
NotifyService 	Process the NotifyQueue with a route to allow all local process to access it
LogEventsProc 	This is the main store procedure that is used to process the logon events
Login_Notification This is the event notification that triggers the NotifyService when a logon event is excited on the server.

A special user has to be setup for SQL bouncer called “bouncer”.
	This user has processadmin, public, securityadmin server roles.
	Must be mapped to AdventureWorks2008R2 as “SQL_bouncer” default schema of dbo with db_securityadmin and public database roles.
	Must be mapped to bouncer as “SQL_bouncer” default schema of dbo with db_owner, db_securityadmin, public database roles.
	Must be mapped to MYWorkDB as “SQL_bouncer” default schema of dbo with db_datareader, db_executer, and public database roles.
	Must be mapped to msdb as “SQL_bouncer” default schema of dbo with DatabaseMailUserRole, db_executor, and public database roles.

	

SQL Bouncer database:
	Tables:

		Dbo.BlackList_App	This has a list of the applications names that should be bounced.
		Dbo_bouncer_control 	This is used to store globel flags for SQL bouncer .
		Dbo.bouncer_email_control	This has the SQL bouncer email controls in it.
		Dbo.ErrorHandling 	This holds a list of error that SQL bouncer has issued. Note this table is normally empty unless something is wrong.
		Dbo.LoggedEvents	This olds a list of the logged on events.

		Dbo.LoggedEventsXML	This hold the raw XML as it came from the event.

		Dbo.VIP_Hosts		This holds a list of hosts that should not be bounced.
		Dbo.host_stat		This hold the per host logins per sec stats

Store Procedures:
	LogEventsProc	This is the main logic for SQL Bouncer and is executed at every logon event.
	Proc_trace_by_computer_redirct 	This will trace a host back to the user and return the user ID, Name, and email address.
	spErrorHandling		This is called by SQL Bounce when an unexpected error happens and will store information in the ErrorHandling table.
proc_bouncer_status		print the current status of bouncer
proc_bouncer_stop		stops bouncer data collection
proc_bouncer_start		start bouncer data collection
proc_bouncer_reset		reset bouncer (stop, rebuild queues, start)
proc_bouncer_clear		clears queues (not normally used)
proc_bouncer_reset_stats	resets the logon per sec stats both server and host level

Jobs:
	Bouncer_Reset			run proc_bouncer_reset when SQL agent is start to clear all old logins from system reboots or failovers
	Bouncer stat update		keep login per sec stats updated and shutdown bouncer if a login flood is detected.

[bookmark: _Toc306403128]BlackList_App
	Used to black list application string that bouncer will bounce.

SELECT [CID]
 ,[App_Name]
 ,[bounce_App]
 FROM [bouncer].[dbo].[BlackList_App]

CID is a row identifiyer
App_Name is the application to black list (bounce)
Bounce_App 	1 = bounce app 0 = allow app

[bookmark: _Toc306403129]bouncer_control
	This is used as global control for bouncer. Note there should only be one row in this table.
SELECT [Log_Only_Kills]
 ,[TestMode]
 ,[SaveStatus]
 ,[LastKillDate]
 ,[Total_Kill]
 ,[LastSPIDKilled]
 ,[LastUserKilled]
 ,[LastErrorDate]
 ,[LastErrorMsg]
 ,[Total_Errors]
 ,[Timeout_value]
 ,[Save_XML]
 ,[Use_trace_comp]
 ,[send_email]
 ,[Admins_pass]
 ,[X_loc_host]
 FROM [bouncer].[dbo].[bouncer_control]

Log_Only_Kills
	1 = log only kills (things that are bounced)
	0 = Everything (used for debuging)
TestMode
	1 = Test mode no kills (logs and email as normal)
	0 = Normal mode kills are done
SaveSatus
	1 = update kill info only
	2 = update kill info and error info
	3 = error info only
	0 = no kill info and no error info
LastKillDate is the date that the last kill was done
Total_Kill is the number of kills done
LastSPIDKilled is the SPID of the last kill done
LastUserKilled is the last user ID that was killed
LastErrorDate is the last date that an error was recorded
LastErrorMsg is the last error message recorded
Total_Errors is the total number of errors recorded
Timeout_value is the time out used in the waitfor
Save_XML
	1 = save raw event XML (used for debuging)
	0 = no XML is saved
Use_trace_comp
	1 = use proc_trace_by_computer_redirect to find ID, Name and email
	0 = no trace is done
send_email
	1 = send email
	0 = no email is sent
Admins_pass
	1 = system admin users are not bounced
	0 = all users inclueding system admins are bounced
X_loc_host
	1 = local hosts are excluded from bouncer
	0 = all hosts are bounced

logins_per_sec
	Is the logins per sec as of the last time the bouncer stat update job ran (normally 1 min).
logins_per_sec_max
	Is the max number of logins per secound to allow before bouncer shuts itself down. The shutdown is done from the bouncer stat update job if the logins per sec exceed the logins_per_sec_max.
logins_per_sec_per_host_max
	Is the max number of logins per secound to allow for any one host. The shutdown is done from the bouncer stat update job if the max is exceeded by any one host.
lifetime_max_logins_per_sec
	Is the max logins per sec record since the last time proc_bouncer_reset_stats has run.

[bookmark: _Toc306403130]bouncer_email_control
	This is used to control how emails are send and formatted.

SELECT [email_To]
 ,[email_cc]
 ,[email_subject]
 ,[email_body]
 ,[email_body_type]
 ,[email_importance]
 ,[email_sensitivity]
 ,[email_profile]
 FROM [bouncer].[dbo].[bouncer_email_control]

email_To
	Is the email addresses that email is sent to. Note “#EMAIL#” is replaced with the email address returned form the trace by host store procedure.
email_cc
	Is the copies to email addresses.
email_subject
	Is the email subject.
email_body
	Is the body of the email in the format of email_body_type.
	Replaces:
		#NAME# is the name returned by the trace by host store procedure
		#SPID# is the SPID that was killed
		#KILLTIME# is the date and time the SPID was killed
		#SERVERNAME# is the SQL sever
		#HOSTNAME# is the host that SPID was killed
		#APPNAME# is the application name that was killed
		#SQLUSER# is the SQL user ID that was killed
		#BKUSER# is the BK user ID that was returned by host store procedure
		#EMAIL# is the email address that was returned by host trace store procedure
		#TRNAME# is the full user name returned by the host trace store procedure
		#BCID# is the bouncer CID on the row that was written

email_body_type
	Is the type of the email body.
		TEXT = text format (no format)
		HTML = HTML format
email_importance
· Low
· Normal
· High
email_sensitivity
· Normal
· Personal
· Private
· Confidential
email_profile
	Is the email profile to use from DBMail

[bookmark: _Toc306403131]LoggedEvents
	This is used to hold the bouncer log of events.

SELECT [CID]
 ,[EventType]
 ,[PostTime]
 ,[SPID]
 ,[TextData]
 ,[BinaryData]
 ,[DatabaseID]
 ,[NTUserName]
 ,[NTDomainName]
 ,[HostName]
 ,[ClientProcess]
 ,[ApplicationName]
 ,[LoginName]
 ,[StartTime]
 ,[EventSubClass]
 ,[Success]
 ,[IntegerData]
 ,[ServerName]
 ,[DatabaseName]
 ,[LoginSID]
 ,[RequestID]
 ,[EventSequence]
 ,[IsSystem]
 ,[SessionLoginName]
 ,[trace_email]
 ,[trace_UserID]
 ,[trace_Name]
 ,[Kill_SPID]
 ,[email_ID]
 ,[email_mailed]
 FROM [bouncer].[dbo].[LoggedEvents]

CID is the row indenifyer
EventType is the EventType (AUDIT_LOGIN)
PostTime is the time the login was posted
SPID is the SPID of the login
TextData data from xml (not currently used by bouncer)
BinaryData data from xml (not currently used by bouncer)
DatabaseID is the database ID that was logged into by login
NTUserName is the windows user name of the login
NTDomainName is the windows domain of the login
HostName is the host name of the login
ClientProcess is the client process ID on the host system
ApplicationName is the application name that is logging in
LoginName is the SQL user ID of the login
StartTime is the time the login was started
EventSubClass data from xml (not currently used by bouncer)
Success data from xml (not currently used by bouncer)
IntegerDate is the network packet size
SeverName is the SQL server name
DatabaseName is the name of the database that is logging into
LoginSID is the login security ID
RequestID data from xml (not currently used by bouncer)
EventSequence data from xml (not currently used by bouncer)
IsSystem data from xml (not currently used by bouncer)
SessionLoginName data from xml (not currently used by bouncer)
trace_email is the email address that was returned by the trace host store procedure
trace_UserID is the windows user ID that was returned by the trace host store procedure
trace_Name is the full user name returned by the trace host store procedure
Kill_SPID
	1 = SPID was killed
	0 = SPID was not killed
Email_ID is the email ID returned by DBMail
Email_mailed
	1 = email sent
[bookmark: _Toc306403132]LoggedEventsXML
	This is used to store the raw xml from the event. (used for debugging)
SELECT [EventNumber]
 ,[EventType]
 ,[EventTime]
 ,[EventData]
 FROM [bouncer].[dbo].[LoggedEventsXML]

EventNumber is the row indentifer
EventType is the Event type (AUDIT_LOGIN)
EventTime is the date and time the event occurred
EventData is the raw xml from the event

[bookmark: _Toc306403133]VIP_Hosts

This can be used to allow a host access regardless of the bouncer rules. Just add a row to this table with the host name and the start and end times that access is going to be allowed for the host.

SELECT [CID]
 ,[VIP_Host_Name]
 ,[VIP_Start_Date]
 ,[VIP_End_Date]
 FROM [bouncer].[dbo].[VIP_Hosts]

CID is the row indentity
VIP_Host_Name is the host name to excluded from bouncer
VIP_Start_Date is the start date and time that the host will be excluded
VIP_End_Date is the end date and time that host will be excluded

[bookmark: _Toc306403134]host_stats

host_stats is use to track logings per sec per host. This allow bouncer to tell if a host is causing a login flood and which one it is.

SELECT [CID]
 ,[HostName]
 ,[num_logins]
 ,[logins_per_sec]
 ,[last_stat_date]
 ,[lifetime_max_logins_per_sec]
 ,[lifetime_max_logins_per_sec_date]
 FROM [bouncer].[dbo].[host_stats]

CID is the row indentity
HostName is the host name which stats are keep for.
num_logins is the number of logins since the last stat update from bouncer stat update job. Note reset but proc_bouncer_reset_stats.
logins_per_sec is the logins_per_sec as of the last run of the bouncer stat update job. The date and time is of last update is keep in last_stat_date. Note reset but proc_bouncer_reset_stats.
last_stat_date is the last date and time the status have been updated by the bouncer stat update job. Note reset but proc_bouncer_reset_stats.
lifetime_max_logins_per_sec is the maxume logons per sec since the last run of proc_bouncer_reset_status. The date and time this occurred is keep in lifetime_max_logins_per_sec_date. Note reset but proc_bouncer_reset_stats.
lifetime_max_logins_per_sec_date is the data and time which the lifetime_max_logins_per_sec was reached. Note reset but proc_bouncer_reset_stats.

Bouncer will add 1 to the num_logins for the host that it is processing a login for. A job called Bouncer Stat Update runs at a time intervolt currently 1 min that calucates the other fileds. If the job is not running than num_logins will keep getting bigger. When the job runs after calucating the logins per sec it then clears (set to zero) and reset the date for the next run.

[bookmark: _Toc306403135]LogEventsProc
	This is the main store procedure that is called for every login.

[bookmark: _Toc306403136]proc_trace_by_computer_redirect

EXEC	@return_value = [dbo].[proc_trace_by_computer_redirect]
		@comp_in = N'HostName',
		@user_out = @user_out OUTPUT,
		@email_out = @email_out OUTPUT,
		@display_name_out = @display_name_out OUTPUT

comp_in is the host name to trace
user_out is the windows users ID
email_out is the email for the windows users ID
display_name_out is the full name of the windows users ID

The trace allows bouncer to get the user information that is missing from the SQL server.
Because of the way the domain are setup the production SQL server does not have direct access to the windows users information (AD). The reason word “redirect” is used is because the information is ship via link server to the backend server which has access to the windows user information (AD).

[bookmark: _GoBack]

The host name of the user that is using a common SQL user name on the production system (PROD) is sent to our backend system (BACKEND) via link server. The backend server (BACKEND) then checks to see what windows ID is logged on to the host name that was send from the production system. It then takes that windows ID and does lookups in active directory on the domain controller to get the full name and email address. After the information is retrieved it is sent back to the production system (PROD).
Example:
EXEC	@return_value = [dbo].[proc_trace_by_computer_redirect]
		@comp_in = N'MYCOMPID',
		@user_out = @user_out OUTPUT,
		@email_out = @email_out OUTPUT,
		@display_name_out = @display_name_out OUTPUT

Returns:
	@user_out
	@email_out
	@display_name_out

	MYID
	 myemail@somedomain.com
	 Salomon, Said J.

[bookmark: _Toc306403137]proc_bouncer_clear

proc_bouncer_clear is used to clear the queues. Normally not used. Used in case queues are corrupted or full. Note it rebuilds empty queues too so a proc_bouncer_reset can be done without error after word to get bouncer back up. There are no parameters to this store procedure. This store procedure will call proc_bouncer_stop to make sure bouncer is stopped so the queues can be remove.

[bookmark: _Toc306403138]proc_bouncer_reset

proc_bouncer_reset is used to reset bouncer. It will stop bouncer by calling proc_bouncer_stop. Then it will remove the queues and routes and rebuild them. Then it will start bouncer using proc_bouncer_start.

[bookmark: _Toc306403139]proc_bouncer_reset_stats

proc_bouncer_reset_stats is used to reset the logins per sec stats both in bouncer control (server level) and those keep in the host_stats table. Number of logins, logins_per_sec and dates are all reset to zeros and today’s date and time.

[bookmark: _Toc306403140]proc_bouncer_start

proc_bouncer_start is use to start bouncer. proc_bouncer_start will first stop bouncer by calling proc_bouncer_stop then will start bouncer. Note unlike proc_bouncer_reset this procedure does not rebuild queues. An email is send out to DAB Team to alert them that bouncer has been started.

[bookmark: _Toc306403141]proc_bouncer_status

proc_bouncer_status will print status of bouncer.

Example:
exec dbo.proc_bouncer_status
Bouncer is running rows in queue: 9
 logins per sec: 37 max logins per sec: 100
 hightest logins per sec host: somehost
 logins per sec: 0 max logins per host: 75 last stat date: Oct 4 2011 1:40PM

[bookmark: _Toc306403142]proc_bouncer_stop

proc_bouncer_stop will stop bouncer. Note this only stop collecting logins it will continue to process the logins all ready in the queue. This will send email to DBA Team to tell them bouncer has stop.

oleObject2.bin

image1.emf
Bouncer

Normal login

process

login

Load XML data

Load bouncer

control

Should logon

be killed

Set kill switch

Insert

LoggedEventsXML

and LoggedEvents

Kill SPID if kill

switch is on

proc_trace_by_co

mputer_redirect

Send Email

Yes

end

oleObject1.bin
login

Bouncer

Normal login process

Load XML data

Load bouncer control

Should logon be killed

Set kill switch

Insert LoggedEventsXML and LoggedEvents

Kill SPID if kill switch is on

proc_trace_by_computer_redirect

Send Email

Yes

end

image2.emf
FrontEnd

BackEnd

p

r

oc

_

t

r

a

c

e

_b

y

_

c

o

m

p

u

te

r

_

r

e

d

i

re

c

t

S

Q

L

u

s

e

r

I

D

p

r

o

c

_

t

r

a

c

e

_

b

y

_

c

o

m

p

u

t

e

r

Domain Controller

p

r

o

c

_

t

r

a

c

e

_

b

y

_

c

o

m

p

u

t

e

r

